pDRIVE5s-mROSA

A plasmid with the native mouse ROSA promoter
 Catalog \# pDRIVE5s-mrosa

For research use only
Version \# 11J11-MM

PRODUCT INFORMATION

Content:

- 1 disk of lyophilized GT116 E. coli bacteria transformed by a pDRIVE5s plasmid.
- GT116 genotype is: F-, mcrA, $\Delta(m r r-h s d R M S-m c r B C), ~ Ø 80 l a c Z \Delta M 15$, $\Delta l a c X 74, r s p L$ (StrA), recAl, endAl $\Delta d c m \Delta s b c C-s b c D$.
- 4 pouches of E. coli Fast-Media ${ }^{\circledR}$ Zeo (2 TB and 2 Agar).

Shipping and storage:

- Products are shipped at room temperature.
- Transformed bacteria should be stored at $-20^{\circ} \mathrm{C}$. Bacteria are stable up to one year when properly stored.
- Store E. coli Fast-Media ${ }^{\circledR}$ Zeo at room temperature. Fast-Media ${ }^{\circledR}$ pouches are stable 18 months when stored properly.

Quality control:

- Plasmid construct has been confirmed by restriction analysis and sequencing.
- Bacteria have been lyophilized, and their viability upon resuspension has been verified.

GENERAL PRODUCT USE

pDRIVE5s is an expression plasmid containing a native or composite promoter of interest. pDRIVE5s may be used to:

- Subclone a promoter of interest into another vector. Unique restriction sites are present at each end of the promoter allowing convenient excision. The 5 ' site is $S d a$ I. $S d a$ I is compatible with $N s i$ I and Pst I. The 3' restriction site is $B s p H$ I. BspH I is compatible with Nco I and BspLU11 I.
- Compare the activity of different promoters in transient transfection experiments. Each pDRIVE5s promoter drives the expression of the SEAP reporter gene which allows for testing of the promoter's activity in transient transfection experiments. Furthermore, the SEAP gene is flanked by unique restriction sites (Bsp HI and Nhe I) for easy replacement with a different gene of interest.

PROMOTER CHARACTERISTICS

Mouse ROSA promoter

Complete promoter size: 1926 bp
Specificity: Ubiquitous
The ROSA26 promoter, initially identified by random retroviral gene trapping in mouse embryonic stem cells ${ }^{1}$, directs expression of reporter ${ }^{2}$ and recombinase genes 3 in all cells throughout embryonic development and in adult tissues. This TATA-less promoter is very effective in vitro in a very broad range of mammalian cell lines. The strength of the ROSA26 promoter is ascribed to the 10 potential Sp 1 sites found within the CpG island extending from the proximal promoter to the first half of intron 1, the highest number of Sp 1 sites ever recorded in any natural promoter.

1. Zambrowicz BP. et al. 1997. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci USA. 94:3789-94.
2. Kisseberth WC. et al. 1999. Ubiquitous expression of marker transgenes in mice and rats. Dev Biol.214:128-38.
3. Farley FW. et al. 2000. Widespread recombinase expression using FLPeR (Flipper) mice. Genesis. 28:106-10.

PLASMID FEATURES

- SEAP gene encodes an engineered secreted embryonic alkaline phosphatase. The levels of SEAP in the culture medium of transfected cells expressing the reporter gene can be assayed with chromogenic or luminescent methods
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA.
- pMB1 Ori is a minimal E. coli origin of replication with the same activity as the longer Ori.
- EM2K is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli.
- Zeo gene confers Zeocin ${ }^{\mathrm{TM}}$ resistance therefore allowing the selection of transformed E. coli carrying a pDRIVE5s plasmid.
Note: Stable transfection of clones cannot be performed due to the absence of an eukaryotic promoter upstream of the Sh ble gene.

METHODS

Growth of pDRIVE5s-transformed bacteria:
Use sterile conditions to do the following:
1 - Resuspend the lyophilized E. coli by adding 1 ml of LB medium in the tube containing the disk. Let sit for 5 minutes. Mix gently by inverting the tube several times.
2- Streak bacteria taken from this suspension on a zeocin LB agar plate prepared with the E. coli Fast-Media ${ }^{\circledR}$ Zeo agar provided (see below).
3- Place the plate in an incubator at $37^{\circ} \mathrm{C}$ overnight.
4- Isolate a single colony and grow the bacteria in TB supplemented with Zeocin ${ }^{\text {TM }}$ using the Fast-Media ${ }^{\circledR}$ Zeo liquid provided (see below).
5- Extract the pDRIVE5s plasmid DNA using the method of your choice.

Selection of bacteria with E. coli Fast-Media Zeo:

E. coli Fast-Media ${ }^{*}$ Zeo is a new, fast and convenient way to prepare liquid and solid media for bacterial culture by using only a microwave. E. coli Fast-Media ${ }^{\circledR}$ Zeo is a TB (liquid) or LB (solid) based medium with Zeocin ${ }^{\text {TM }}$, and contains stabilizers.
E. coli Fast-Media ${ }^{\text {® }}$ Zeo can be ordered separately (catalog code fas-zn-1, fas-zn-s).

Method:

1- Pour the contents of a pouch into a clean borosilicate glass bottle or flask. 2- Add 200 ml of distilled water to the flask
3- Heat in a microwave on MEDIUM power setting (about 400Watts), until bubbles start appearing (approximately 3 minutes). Do not heat a closed container. Do not autoclave Fast-Media ${ }^{\text {® }}$.
4- Swirl gently to mix the preparation. Be careful, the bottle and media are hot, use heatproof pads or gloves and care when handling.
5- Reheat the media for 30 seconds and gently swirl again. Repeat as necessary to completely dissolve the powder into solution. But be careful to avoid overboiling and volume loss.
6- Let agar medium cool to $45^{\circ} \mathrm{C}$ before pouring plates. Let liquid media cool to $37^{\circ} \mathrm{C}$ before seeding bacteria.
Note: Do not reheat solidified Fast-Media ${ }^{\circledR}$ as the antibiotic will be permanently destroyed by the procedure.

XbaI (15) SdaI (29)

NotI (2) NsiI (14) EcoRI (19)

1 GCGGCCGCTATGCATCTAGAATTCCTGCAGGTGAAGACGTTACACAAGTAACATGAGAAAGCAGAAAATGCAGGTCATC
80 CACGCACCCCTGACCCAGGCCAGCAGGGCGGGCTGCAGCATCAGTACACAGGAGAAAGATCCTTATTCCTAAGAATGAG -
159 AAAGGCAAAGGCGCCCGATAGAATAAATTAGCATAGAAGGGGCTTTCCCAGGAGTTAAAACTTTCCTTCTGAGCGATTA
238 CCTACTAAAACCAGGGCTTTTGCCCACTACCATTTACCTAGGATCTTGGCTTGCACGGATTCATAGGGGCATATCCCTC
317 CCCCTCTTCTTTAGAGTCGTTCTTAAAAGATCGCTCTCCACGCCCTAGGCAGGGAAAACGACAAAATCTGGCTCAATTC
EcoRV (426)
396 CAGGCTAGAACCCTACAAATTCAACAGGGATATCGCAAGGATACTGGGGCATACGCCACAGGGAGTCCAAGAATGTGAG bTGGGGTGGCGAAGGTAATGTC
475 GTGGGGGTGGCGAAGGTAATGTCTTTGGTGTGGGAAAAGCAGCAGCCATCTGAGATAGGAACTGGAAAACCAGAGGAGA
554 GGCGTTCAGGAAGATTATGGAGGGGAGGACTGGGCCCCCACGAGCGACCAGAGTTGTCACAAGGCCGCAAGAACAGGGG
633 AGGTGGGGGGCTCAGGGACAGAAAAAAAAGTATGTGTATTTTGAGAGCAGGGTTGGGAGGCCTCTCCTGAAAAGGGTAT -
712 AAACGTGGAGTAGGCAATACCCAGGCAAAAAGGGGAGACCAGAGTAGGGGGAGGGGAAGAGTCCTGACCCAGGGAAGAC

SalI (808)

791 ATTAAAAAGGTAGTGGGGTCGACTAGATGAAGGAGAGCCTTTCTCTCTGGGCAAGAGCGGTGCAATGGTGTGTAAAGGT —
870 AGCTGAGAAGACGAAAAGGGCAAGCATCTTCCTGCTACCAGGCTGGGGAGGCCCAGGCCCACGACCCCGAGGAGAGGGA
949 ACGCAGGGAGACTGAGGTGACCCTTCTTTCCCCCGGGGCCCGGTCGTGTGGTTCGGTGTCTCTTTTCTGTTGGACCCTT
XhoI (1098
1028 ACCTTGACCCAGGCGCTGCCGGGGCCTGGGCCCGGGCTGCGGCGCACGGCACTCCCGGGAGGCAGCGAGACTCGAGTTA
1107 GGCCCAACGCGGCGCCACGGCGTTTCCTGGCCGGGAATGGCCCGTACCCGTGAGGTGGGGGTGGGGGGCAGAAAAGGCG
1186 GAGCGAGCCCGAGGCGGGGAGGGGGAGGGCCAGGGGCGGAGGGGGCCGGCACTACTGTGTTGGCGGACTGGCGGGACTA
NotI (1298)
1265 GGGCTGCGTGAGTCTCTGAGCGCAGGCGGGCGGCGGCCGCCCCTCCCCCGGCGGCGGCAGCGGCGGCAGCGGCGGCAGC
1344 TCACTCAGCCCGCTGCCCGAGCGGAAACGCCACTGACCGCACGGGGATTCCCAGTGCCGGCGCCAGGGGCACGCGGGAC
1423 ACGCCCCCTCCCGCCGCGCCATTGGCCTCTCCGCCCACCGCCCCACACTTATTGGCCGGTGCGCCGCCAATCAGCGGAG
1502 GCTGCCGGGGCCGCCTAAAGAAGAGGCTGTGCTTTGGGGCTCCGGCTCCTCAGAGAGCCTCGGCTAGgtaggggatcgg
NotI (1623)
1581 gactctggcgggagggcggcttggtgcgtttgcggggatgggcggccgcggcaggccctccgagcgtggtggagccgtt
1660 ctgtgagacagccgggtacgagtcgtgacgctggaaggggcaagcgggtggtgggcaggaatgcggtccgccctgcagc

NcoI (1788)

1739 aaccggagggggagggagaagggagcggaaaagtctccaccggacgcggccatggctcgggggggggggggcagcggag
1818 gagcgcttccggccgacgtctcgtcgctgattggcttcttttcctcccgccgtgtgtgaaaacacaattgtactaac \rightarrow
AgeI (1938) BspHI (1954)
1895 cttcttctctttcctctcctgacagGTGTGAAACAGGAAGAGAACCGGTAGGAGGGCCATCATGATTCTGGGGCC 1* M L G P
1970 CTGCATGCTGCTGCTGCTGCTGCTGCTGGGCCTGAGGCTACAGCTCTCCCTGGGCATCATCCCAGTTGAGGAGGAGAAC

2049 CCGGACTTCTGGAACCGCGAGGCAGCCGAGGCCCTGGGTGCCGCCAAGAAGCTGCAGCCTGCACAGACAGCCGCCAAGA

2128 ACCTCATCATCTTCCTGGGCGATGGGATGGGGGTGTCTACGGTGACAGCTGCCAGGATCCTAAAAGGGCAGAAGAAGGA 58. N L I I F L G D G M G V

2207 CAAACTGGGGCCTGAGATACCCCTGGCTATGGACCGCTTCCCATATGTGGCTCTGTCCAAGACATACAATGTAGACAAA
 2286 CATGTGCCAGACAGTGGAGCCACAGCCACGGCCTACCTGTGCGGGGTCAAGGGCAACTTCCAGACCATTGGCTTGAGTG
 2365 CAGCCGCCCGCTTTAACCAGTGCAACACGACACGCGGCAACGAGGTCATCTCCGTGATGAATCGGGCCAAGAAAGCAGG
 2444 GAAGTCAGTGGGAGTGGTAACCACCACACGAGTGCAGCACGCCTCGCCAGCCGGCACCTACGCCCACACGGTGAACCGC
 2523 AACTGGTACTCGGACGCCGACGTGCCTGCCTCGGCCCGCCAGGAGGGGTGCCAGGACATCGCTACGCAGCTCATCTCCA
 2602 ACATGGACATTGATGTGATCCTGGGTGGAGGCCGAAAGTACATGTTTCGCATGGGAACCCCAGACCCTGAGTACCCAGA
 2681 TGACTACAGCCAAGGTGGGACCAGGCTGGACGGGAAGAATCTGGTGCAGGAATGGCTGGCGAAGCGCCAGGGTGCCCGG
 2760 TATGTGTGGAACCGCACTGAGCTCATGCAGGCTTCCCTGGACCCGTCTGTGACCCATCTCATGGGTCTCTTTGAGCCTG
 2839 GAGACATGAAATACGAGATCCACCGAGACTCCACACTGGACCCCTCCCTGATGGAGATGACAGAGGCTGCCCTGCGCCT
 2918 GCTGAGCAGGAACCCCCGCGGCTTCTTCCTCTTCGTGGAGGGTGGTCGCATCGACCACGGTCATCACGAAAGCAGGGCT
 2997 TACCGGGCACTGACTGAGACGATCATGTTCGACGACGCCATTGAGAGGGCGGGCCAGCTCACCAGCGAGGAGGACACGC
 3076 TGAGCCTCGTCACTGCCGACCACTCCCACGTCTTCTCCTTCGGAGGCTACCCCCTGCGAGGGAGCTCCATCTTCGGGCT
 3155 GGCCCCTGGCAAGGCCCGGGACAGGAAGGCCTACACGGTCCTCCTATACGGAAACGGTCCAGGCTATGTGCTCAAGGAC
 3234 GGCGCCCGGCCGGATGTTACCGAGAGCGAGAGCGGGAGCCCCGAGTATCGGCAGCAGTCAGCAGTGCCCCTGGACGAAG

3313 AGACCCACGCAGGCGAGGACGTGGCGGTGTTCGCGCGCGGCCCGCAGGCGCACCTGGTTCACGGCGTGCAGGAGCAGAC
 3392 CTTCATAGCGCACGTCATGGCCTTCGCCGCCTGCCTGGAGCCCTACACCGCCTGCGACCTGGCGCCCCCCGCCGGCACC
 NheI (3520)
3471 ACCGACGCCGCGCACCCGGGGCGGTCCCGGTCCAAGCGTCTGGATTGAAGCTAGCTGGCCAGACATGATAAGATACATT 506. T D A A H P G R S R

3550 GATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTAT

HpaI (3660)

3629 TTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGT
XmnI (3753)

3708 GTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATTAATTCTAAAATACAGCATAGCAAAACTT
3787 TAACCTCCAAATCAAGCCTCTACTTGAATCCTTTTCTGAGGGATGAATAAGGCATAGGCATCAGGGGCTGTTGCCAATG
3866 TGCATTAGCTGTTTGCAGCCTCACCTTCTTTCATGGAGTTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCT

SspI (3999)

3945 TCATTTCTTTATGTTTTAAATGCACTGACCTCCCACATTCCCTTTTTAGTAAAATATTCAGAAATAATTTAAATACATC 4024 ATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAATATCCCCCAGTTTAGTAG 4103 TTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCTAGCTTATCCTCAGTCCTGC 1254 • D Q
4182 TCCTCTGCCACAAAGTGCACGCAGTTGCCGGCCGGGTCGCGCAGGGCGAACTCCCGCCCCCACGGCTGCTCGCCGATCT
 4261 CGGTCATGGCCGGCCCGGAGGCGTCCCGGAAGTTCGTGGACACGACCTCCGACCACTCGGCGTACAGCTCGTCCAGGCC

4340 GCGCACCCACACCCAGGCCAGGGTGTTGTCCGGCACCACCTGGTCCTGGACCGCGCTGATGAACAGGGTCACGTCGTCC

SgrAI (4427)
4419 CGGACCACACCGGCGAAGTCGTCCTCCACGAAGTCCCGGGAGAACCCGAGCCGGTCGGTCCAGAACTCGACCGCTCCGG

4498 CGACGTCGCGCGCGGTGAGCACCGGAACGGCACTGGTCAACTTGGCCATGATGGCTCCTCCTGTCAGGAGAGGAAAGAG 161 V D R A T L V P V A S T L K A M

4577 AAGAAGGTTAGTACAATTGCTATAGTGAGTTGTATTATACTATGCAGATATACTATGCCAATGATTAATTGTCAAACTA
4656 GGGCTGCAGGTTAATTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCG
4735 TTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGAC
4814 TATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCT
4893 GTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTT

4972 CGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGT
5051 CCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGG
5130 TGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAG
5209 CCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTT
5288 GCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTG
5367 GAACGAAAACTCACGTTAAGGGATTTTGGTCATGGCTAGTTAATTAACATTTAAATCA

Fast-Media ${ }^{\circledR}$

Microwaveable media for selection and propagation of E. coli transformants

Catalog \# fas-xx-1, fas-xx-s, fas-xx-xgal
For research use only
Version \# 10G07-MM

PRODUCT INFORMATION

Contents:

E. coli Fast-Media ${ }^{\circledR}$ are prepared as individual sealed pouches containing the necessary amount of powder for preparation of 200 ml of selective liquid or agar medium.
30 pouches are supplied for each order of TB or Agar and 20 pouches are supplied for each order of XGal Agar.
Storage and stability:
Fast-Media ${ }^{\circledR}$ are shipped at room temperature, and must be stored in a dry and cool place. They are stable for 2 years at room temperature.
When properly prepared, Fast-Media ${ }^{\star}$ plates or broths are stable for 4 weeks at $4^{\circ} \mathrm{C}$, and remain sterile and selective.

Quality control:

The high quality and performance of each formulation has been tested with some widely used and proprietary E. coli K12 derived strains*. These include DH5 α, Top10, MC1061, XL1 blue, JM 109, TB1, GT100, GT110, GT115, GT116.
The adequate plasmids carrying the appropriate E. coli resistance genes are used as positive control.
*E. coli recipient strains carrying the Tn 5 transposon are resistant to Kanamycin and Zeocin"'.

GENERAL PRODUCT USE

E. coli Fast-Media ${ }^{\text {® }}$ are microwaveable ready-to-use solid or liquid media, supplied with a selective antibiotic, and chromogenic substrates (for five references), therefore designed for the growth or selection of E. coli transformant colonies, as well as detection of blue/white colonies.

- Fast-Media ${ }^{\text {® }}$ Agar formulation is LB based agar medium supplemented with selective antibiotic, it is used for selection of resistant E. coli colonies after transformation by vectors carrying a selection resistance gene.
- Fast-Media ${ }^{\otimes} \mathbf{X}$-Gal formulation is a LB based agar medium supplemented with selective antibiotic, X-Gal and IPTG. It is used for detection of blue/white resistant colonies after transformation by a vector carrying $\operatorname{Lac} Z$ gene.
- Fast-Media ${ }^{\circledR}$ TB formulation is a Terrific Broth based liquid medium supplemented with selective antibiotic. It's used for high cell density culture of transformed bacteria, and extraction of high quantity and quality of required plasmid.

FAST-MEDIA ${ }^{\circledR}$ FEATURES

E. coli Fast-Media ${ }^{\text {® }}$ offer researchers a quick and convenient way to prepare 200 ml of liquid culture medium, or 8-10 agar plates in about five minutes USING A MICROWAVE INSTEAD OF AN AUTOCLAVE.
E. coli Fast-Media ${ }^{\text {® }}$ are available with a large variety of prokaryotic selective agents including Ampicillin, Blasticidin S, Hygromycin B, Kanamycin, Puromycin and Zeocin ${ }^{\text {" }}$ (see table below). Fast-Media ${ }^{\text {® }}$ is also available with no selective agent (Base) that can be prepared with or without antibiotics.

	Agar	X-Gal	TB
Base	\checkmark		\checkmark
Ampicillin	\checkmark	\checkmark	\checkmark
Blasticidin	$\sqrt{ }$	$\sqrt{ }$	\checkmark
Hygromycin	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Kanamycin	\checkmark	\checkmark	\checkmark
Puromycin	$\sqrt{ }$		$\sqrt{ }$
Zeocin'"	\checkmark	\checkmark	\checkmark

SPECIAL HANDLING

Caution should be exercised during handling of Fast-Media ${ }^{\circledR}$ due to potential allergenic properties of antibiotics. Wear protective gloves, do not breath the dust.

METHOD

For customer convenience, procedure is directly printed on each pouch.
1- Pour the pouch contents into a clean borosilicate glass bottle or flask.
2- Add 200 ml of distilled or deionized water.
3- Mix thoroughly by swirling the glass bottle or flask.
4- Heat in a microwave oven on MEDIUM power setting (about 450W) until bubbles start to appear (about 3 minutes).

Do not heat in a closed container.

5- Swirl gently to mix the preparation and re-heat for 30 seconds. Swirl gently again.
6- Repeat step 4 if necessary until the medium is completely dissolved. Do not overboil.
7- Allow the medium to cool to $50-55^{\circ} \mathrm{C}$, use directly for liquid medium, or pour plates for solid medium.
Caution: Any solution heated in a microwave oven may become superheated and suddenly boil when moved or touched. Handle with extreme care. Wear heat-proof gloves.
Note: Do not repeat this above procedure once the medium is prepared because the antibiotic will be adversely affected.

For preparation of supplemented Fast-Media ${ }^{\circledR}$ Base.

- Follow the instructions above and when media has cooled to $50-55^{\circ} \mathrm{C}$ add the antibiotic at the appropriate concentration for selection of E. coli.

