pDRIVE5s-mPGK

A plasmid with the native ubiquitous murine phosphoglycerate kinase promoter

Catalog \# pDRIVE5s-mpgk

For research use only
Version \# 11D20-MM

PRODUCT INFORMATION

Content:

- 1 disk of lyophilized GT116 E. coli bacteria transformed by a pDRIVE5s plasmid.
- GT116 genotype is: F-, mcrA, $\Delta(m r r-h s d R M S-m c r B C), ~ Ø 80 l a c Z \Delta M 15$, $\Delta l a c X 74, r s p L$ (StrA), recA1, endA1 $\Delta d c m \Delta s b c C-s b c D$.
- 4 pouches of E. coli Fast-Media ${ }^{\circledR}$ Zeo (2 TB and 2 Agar)

Shipping and storage:

- Products are shipped at room temperature.
- Transformed bacteria should be stored at $-20^{\circ} \mathrm{C}$. Bacteria are stable up to one year when properly stored.
- Store E. coli Fast-Media ${ }^{\circledR}$ Zeo at room temperature. Fast-Media ${ }^{\circledR}$ pouches are stable 18 months when stored properly.

Quality control:

- Plasmid construct has been confirmed by restriction analysis and sequencing. - Bacteria have been lyophilized, and their viability upon resuspension has been verified.

GENERAL PRODUCT USE

pDRIVE5s is an expression plasmid containing a native or composite promoter of interest. pDRIVE5s may be used to:

- Subclone a promoter of interest into another vector. Unique restriction sites are present at each end of the promoter allowing convenient excision. The 5' site is $S d a$ I. $S d a$ I is compatible with $N s i$ I and Pst I. The 3' restriction site is $B s p H$ I. BspH I is compatible with $N c o$ I and BspLU11 I.
- Compare the activity of different promoters in transient transfection experiments. Each pDRIVE5s promoter drives the expression of the SEAP reporter gene which allows for testing of the promoter's activity in transient transfection experiments. Furthermore, the SEAP gene is flanked by unique restriction sites (Bsp HI and Nhe I) for easy replacement with a different gene of interest.

PROMOTER CHARACTERISTICS

Murine PGK-1 (gene : Phosphoglycerate Kinase) promoter
Complete Promoter size: 1440bp
Specificity: Ubiquitous
Pgk-1 is an X-linked gene encoding 3-phosphoglycerate kinase, an enzyme necessary in every cell for glycolysis. The promoter region of the pgk-1 gene is rich in G and C nucleotides and contains five copies of the hexadeoxynucleotide, GGGCGG, a potential binding site for the Sp 1 transcription factor, a CCAAT sequence, but no TATA box ${ }^{1}$. This promoter can efficiently drive high levels of expression of reporter genes (i.e. SEAP, LacZ and GFP) and therapeutic genes, such as tumor-associated antigenes ${ }^{2,3}$. Furthermore, in contrast to the CMV promoter, the PGK promoter yields sustained expression ${ }^{2}$.

1. Adra CN. et al. 1987. Cloning and expression of the mouse pgk-1 gene and the nucleotide sequence of its promoter. Gene 60(1):65-74.
2. Gerolami R. et al. 2000. Gene transfer to hepatocellular carcinoma: transduction efficacy and transgene expression kinetics by using retroviral and lentiviral vectors. Cancer Gene Ther 7(9):1286-92.
3. Lizee G. et al., 2004. Lentivirus vector-mediated expression of tumor-associated epitopes by human antigen presenting cells. Hum Gene Ther. 15(4):393-404.

PLASMID FEATURES

- SEAP gene encodes an engineered secreted embryonic alkaline phosphatase. The levels of SEAP in the culture medium of transfected cells expressing the reporter gene can be assayed with chromogenic or luminescent methods
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA.
- pMB1 Ori is a minimal E. coli origin of replication with the same activity as the longer Ori.
- EM2K is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli.
- Zeo gene confers zeocin resistance therefore allowing the selection of transformed E. coli carrying a pDRIVE5s plasmid.
Note: Stable transfection of clones cannot be performed due to the absence of an eukaryotic promoter upstream of the Sh ble gene.

METHODS

Growth of pDRIVE5s-transformed bacteria:

Use sterile conditions to do the following:
1 - Resuspend the lyophilized E. coli by adding 1 ml of LB medium in the tube containing the disk. Let sit for 5 minutes. Mix gently by inverting the tube several times.
2- Streak bacteria taken from this suspension on a zeocin LB agar plate prepared with the E. coli Fast-Media ${ }^{\circledR}$ Zeo agar provided (see below).
3- Place the plate in an incubator at $37^{\circ} \mathrm{C}$ overnight.
4- Isolate a single colony and grow the bacteria in TB supplemented with zeocin using the Fast-Media ${ }^{\circledR}$ Zeo liquid provided (see below).
5- Extract the pDRIVE5s plasmid DNA using the method of your choice.

Selection of bacteria with E. coli Fast-Media Zeo:

E. coli Fast-Media ${ }^{\circledR}$ Zeo is a new, fast and convenient way to prepare liquid and solid media for bacterial culture by using only a microwave. E. coli Fast-Media ${ }^{\circledR}$ Zeo is a TB (liquid) or LB (solid) based medium with zeocin, and contains stabilizers.
E. coli Fast-Media ${ }^{\circledR}$ Zeo can be ordered separately (catalog code fas-zn-l, fas-zn-s).

Method:

1- Pour the contents of a pouch into a clean borosilicate glass bottle or flask.
2- Add 200 ml of distilled water to the flask
3- Heat in a microwave on MEDIUM power setting (about 400Watts), until bubbles start appearing (approximately 3 minutes). Do not heat a closed container. Do not autoclave Fast-Media ${ }^{\circledR}$.
4- Swirl gently to mix the preparation. Be careful, the bottle and media are hot, use heatproof pads or gloves and care when handling.
5- Reheat the media for 30 seconds and gently swirl again. Repeat as necessary to completely dissolve the powder into solution. But be careful to avoid overboiling and volume loss.
6- Let agar medium cool to $45^{\circ} \mathrm{C}$ before pouring plates. Let liquid media cool to $37^{\circ} \mathrm{C}$ before seeding bacteria.
Note: Do not reheat solidified Fast-Media ${ }^{\circledR}$ as the antibiotic will be permanently destroyed by the procedure.

EcoRV (334)

302 TTCC AGAGGTGCTTTGGCC AGTCACTCCTGGATATCTGCCAGTGAGAGAGGTGGAAAG AAAAACCAGGAGAGTGAACAAGGGCTTCCATTTCTCATGTG
401 CCCTTCAATTTCCTAACTAGTTGTCCTGTCTCAGACCGTCAGGCAAGCACTTTACCACTGAGCACCGTCCTTAGCCCAAATGAGTGTCAGTAGAGATTTA
501 AAGTTTTGTTTTTGTTTTTAAACAGTGCTGGA GATTGGATC CAC GGC CT CTGGCCCGCATTTTACCACTGAGCTACACTCCCAAAGCAGTCGAAATC
598 ACAGTGGCCCAGGATTGAAATGATCACTTAGATGCTTTGCAGTCTTGATAAGACACTAAATCTTTGTCTATCAGTTACTTCATCTTTAATAACAGAACGT
698 ACTTAGGAATTTTATGAGCATTGTTAGTTAGCATGACACATGCTATATGTATTCGTCATTATGAATAATGTAACCACAGCAATTACATTGTACTTTTTAT
798 TATAAAAGGGGGGAGGGGAAGGCCTGGTCCTTTTTTAACTTCTGAGAGGTTTCGATTACTAAGTAAGACCTTATGTAGACTTCCATTTGGGAGCTGAGAAA
XbaI (935) EcoRI (953) Sp
899 GCAGAGGATTCCAAAAGGGGATGACATTTGCAAAGGTCTAGAAAAGGCGCCTGGGAATTCTACCGGGTAGGGGAGGCGCTTTTCCCAAGGCAGTCTGGAGC

AgeI (1073)

1000 ATGCGCTTTAGCAGCCCCGCTGGGCACTTGGCGCTACACAAGTGGCCTCTGGCCTCGCACACATTCCACATCCACCGGTAGGCGCCAACCGGCTCCGTTC
1100 TTTGGTGGCCCCTTCGCGCCACCTTCTACTCCTCCCCTAGTCAGGAAGTTCCCCCCCGCCCCGCAGCTCGCGTCGTGCAGGACGTGACAAATGGAAGTA
1199 GCACGTCTCACTAGTCTCGTGCAGATGGACAGCACCGCTGAGCAATGGAAGCGGGTAGGCCTTTGGGGCAGCGGCCAATAGCAGCTTTGCTCCTTCGCTT

BspEI (1381)

1299 TCTGGGCTCAGAGGCTGGGAAGGGGTGGGTCCGGGGGCGGGCTCAGGGGCGGGCTCAGGGGCGGGGCGGGCGCCCGAAGGTCCTCCGGAGGCCCGGCATT

BspHI (1480)

SphI (1502)
1399 CTGCACGCTTCAAAAGCGCACGTCTGTCGCGCTGTTCTCCTCTTCCTCATCTCCGGGCCTTTCGACCTCACGGTGTTGCCATCATGATTCTGGGGCCCTG —1 M $\mathrm{M} \quad \mathrm{L} \quad \mathrm{P} \quad \mathrm{C}$
1499 CATGCTGCTGCTGCTGCTGCTGCTGGGCCTGAGGCTACAGCTCTCCCTGGGCATCATCCCAGTTGAGGAGGAGAACCCGGACTTCTGGAACCGCGAGGCAG
6. M L L L L L L L G L $\quad \mathrm{L}$ 1600 CCGAGGCCCTGGGTGCCGCCAAGAAGCTGCAGCCTGCACAGACAGCCGCCAAGAACCTCATCATCTTCCTGGGCGATGGGATGGGGGTGTCTACGGTGACA
 1701 GCTGCCAGGATCCTAAAAGGGCAGAAGAAGGACAAACTGGGGCCTGAGATACCCCTGGCTATGGACCGCTTCCCATATGTGGCTCTGTCCAAGACATACAA
 1802 TGTAGACAAACATGTGCCAGACAGTGGAGCCACAGCCACGGCCTACCTGTGCGGGGTCAAGGGCAACTTCCAGACCATTGGCTTGAGTGCAGCCGCCCGCT 107 V V $\quad \mathrm{D} \quad \mathrm{K}$ 1903 TTAACCAGTGCAACACGACACGCGGCAACGAGGTCATCTCCGTGATGAATCGGGCCAAGAAAGCAGGGAAGTCAGTGGGAGTGGTAACCACCACACGAGTG
 2004 CAGCACGCCTCGCCAGCCGGCACCTACGCCCACACGGTGAACCGCAACTGGTACTCGGACGCCGACGTGCCTGCCTCGGCCCGCCAGGAGGGGTGCCAGGA
 2105 CATCGCTACGCAGCTCATCTCCAACATGGACATTGATGTGATCCTGGGTGGAGGCCGAAAGTACATGTTTCGCATGGGAACCCCAGACCCTGAGTACCCAG 208 I A 2206 ATGACTACAGCCAAGGTGGGACCAGGCTGGACGGGAAGAATCTGGTGCAGGAATGGCTGGCGAAGCGCCAGGGTGCCCGGTATGTGTGGAACCGCACTGAG
 2307 CTCATGCAGGCTTCCCTGGACCCGTCTGTGACCCATCTCATGGGTCTCTTTGAGCCTGGAGACATGAAATACGAGATCCACCGAGACTCCACACTGGACCC
 SacII (2462)
2408 CTCCCTGATGGAGATGACAGAGGCTGCCCTGCGCCTGCTGAGCAGGAACCCCCGCGGCTTCTTCCTCTTCGTGGAGGGTGGTCGCATCGACCACGGTCATC
 2509 ACGAAAGCAGGGCTTACCGGGCACTGACTGAGACGATCATGTTCGACGACGCCATTGAGAGGGCGGGCCAGCTCACCAGCGAGGAGGACACGCTGAGCCTC
 2610 GTCACTGCCGACCACTCCCACGTCTTCTCCTTCGGAGGCTACCCCCTGCGAGGGAGCTCCATCTTCGGGCTGGCCCCTGGCAAGGCCCGGGACAGGAAGGC 377 V T \quad T A 2711 CTACACGGTCCTCCTATACGGAAACGGTCCAGGCTATGTGCTCAAGGACGGCGCCCGGCCGGATGTTACCGAGAGCGAGAGCGGGAGCCCCGAGTATCGGC
 2812 AGCAGTCAGCAGTGCCCCTGGACGAAGAGACCCACGCAGGCGAGGACGTGGCGGTGTTCGCGCGCGGCCCGCAGGCGCACCTGGTTCACGGCGTGCAGGAG 444. Q (Q S S A V 2913 CAGACCTTCATAGCGCACGTCATGGCCTTCGCCGCCTGCCTGGAGCCCTACACCGCCTGCGACCTGGCGCCCCCCGCCGGCACCACCGACGCCGCGCACCC

NheI (3046)

3014 GGGGCGGTCCCGGTCCAAGCGTCTGGATTGAAGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAA
511. \quad G \quad R \quad R \quad S \quad R \quad L

3115 AAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTT
3216 TCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATTAATTCTAAAATACAGCATAGCAAAACTTTAAC
3317 CTCCAAATCAAGCCTCTACTTGAATCCTTTTCTGAGGGATGAATAAGGCATAGGCATCAGGGGCTGTTGCCAATGTGCATTAGCTGTTTGCAGCCTCACCT 3418 TCTTTCATGGAGTTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCTTCATTTCTTTATGTTTTAAATGCACTGACCTCCCACATTCCCTTTTTA

SspI (3525)

3519 GTAAAATATTCAGAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAATATCCCCCA 3620 GTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCTAGCTTATCCTCAGTCCTGCTCCTCTGCCACAA 125 - D Q E E A V F 3721 AGTGCACGCAGTTGCCGGCCGGGTCGCGCAGGGCGAACTCCCGCCCCCACGGCTGCTCGCCGATCTCGGTCATGGCCGGCCCGGAGGCGTCCCGGAAGTTC

3822 GTGGACACGACCTCCGACCACTCGGCGTACAGCTCGTCCAGGCCGCGCACCCACACCCAGGCCAGGGTGTTGTCCGGCACCACCTGGTCCTGGACCGCGCT

SgrAI (3953)

3923 GATGAACAGGGTCACGTCGTCCCGGACCACACCGGCGAAGTCGTCCTCCACGAAGTCCCGGGAGAACCCGAGCCGGTCGGTCCAGAACTCGACCGCTCCGG

AatII (4029)
4024 CGACGTCGCGCGCGGTGAGCACCGGAACGGCACTGGTCAACTTGGCCATGATGGCTCCTCCTGTCAGGAGAGGAAAGAGAAGAAGGTTAGTACAATTGCTA
$161 \vee \mathrm{D} \quad \mathrm{R} \quad \mathrm{A} \quad \mathrm{T} \quad \mathrm{L} \quad \mathrm{P} \quad \mathrm{P} \quad \mathrm{V} \quad \mathrm{S} \quad \mathrm{T} \quad \mathrm{L} \quad \mathrm{K}$ A M 4
4125 TAGTGAGTTGTATTATACTATGCAGATATACTATGCCAATGATTAATTGTCAAACTAGGGCTGCAGGTTAATTAAGAACATGTGAGCAAAAGGCCAGCAAA
4226 AGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGA
4327 AACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTT
4428 TCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCC
4529 CCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGG
4630 ATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCT

4731 GAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGC
4832 GCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGGCTAGT
4933
TAATTAACATTTAAATCA

