pDRIVE5SEAP-meIF4A1

A plasmid with a native ubiquitous murine eukaryotic initiation factor 4A1 promoter
 Catalog \# pDRIVE5s-meif4a1

For research use only
Version \# 09H19-MM

PRODUCT INFORMATION

Content:

- 1 disk of lyophilized GT116 E. coli bacteria transformed by a pDRIVE5-SEAP plasmid.
- GT116 genotype is: F-, mcrA, $\Delta(m r r-h s d R M S-m c r B C), ~ Ø 80 l a c Z \Delta M 15$, $\Delta l a c X 74, r s p L$ (StrA), recA1, endA1 $\Delta d c m \Delta s b c C-s b c D$.
- 4 pouches of E. coli Fast-Media ${ }^{\oplus}$ Zeo (2 TB and 2 Agar)

Shipping and storage:

- Products are shipped at room temperature.
- Transformed bacteria should be stored at $-20^{\circ} \mathrm{C}$. Bacteria are stable up to one year when properly stored.
- Store E. coli Fast-Media ${ }^{\circledR}$ Zeo at room temperature. Fast-Media ${ }^{\circledR}$ pouches are stable 18 months when stored properly.

Quality control:

- Plasmid construct has been confirmed by restriction analysis and sequencing. - Bacteria have been lyophilized, and their viability upon resuspension has been verified.

GENERAL PRODUCT USE

pDRIVE5-SEAP is an expression plasmid containing a native or composite promoter of interest. pDRIVE5-SEAP may be used to:

- Subclone a promoter of interest into another vector. Unique restriction sites are present at each end of the promoter allowing convenient excision. The 5' sites are Sda I, and Spe I. Sda I is compatible with Nsi I and Pst I. Spe I is compatible with $A v r$ II, Nhe I and $X b a$ I. The 3' restriction site is Nco I which includes the ATG start codon, and is compatible with BspH I and BspLU11 I. - Compare the activity of different promoters in transient transfection experiments. Each pDRIVE5-SEAP promoter drives the expression of the SEAP reporter gene which allows for testing of the promoter's activity in transient transfection experiments. Furthermore, the SEAP gene is flanked by unique restriction sites (Nco I and Nhe I) for easy replacement with a different gene of interest.

PROMOTER CHARACTERISTICS

Murine eukaryotic initiation factor 4A1 promoter
Complete Promoter size: 483 bp
Specificity: Ubiquitous
The eIF-4A1 gene encoding eukaryotic initiation factor 4A is ubiquitously expressed in eukaryotic cells. The minimal promoter of the eIF-4A1 gene consists of approximately $300 \mathrm{bp}, 80 \%$ of which are identical with those in mouse eIF-4A1 promoter. The minimal promoter contains TATA and CAAT motifs and consensus sequences binding to SP1 and AP2 ${ }^{1}$. The eIF-4A1 promoter is a versatile promoter giving high-levels of expression. In some cell lines, such as macrophages, levels of expression are higher than that obtained with the CMV promoter ${ }^{2}$.

1. Kukimoto I. et al. 1997. Characterization of the cloned promoter of the human initiation factor 4AI gene. Biochem Biophys Res Commun 233(3):844-7.
2. Quinn CM. et al. 1999. The human eukaryotic initiation factor 4AI gene (EIF4A1) contains multiple regulatory elements that direct high-level reporter gene expression in mammalian cell lines. Genomics 62(3):468-76.

PLASMID FEATURES

- SEAP gene encodes an engineered secreted embryonic alkaline phosphatase. The levels of SEAP in the culture medium of transfected cells expressing the reporter gene can be assayed with chromogenic or luminescent methods
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA.
- pMB1 Ori is a minimal E. coli origin of replication with the same activity as the longer Ori.
- EM2K is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli.
- Zeo gene confers zeocin resistance therefore allowing the selection of transformed E. coli carrying a pDRIVE5s plasmid.
Note: Stable transfection of clones cannot be performed due to the absence of an eukaryotic promoter upstream of the Sh ble gene.

METHODS

Growth of pDRIVE5-SEAP transformed bacteria:
Use sterile conditions to do the following:
1 - Resuspend the lyophilized E. coli by adding 1 ml of LB medium in the tube containing the disk. Let sit for 5 minutes. Mix gently by inverting the tube several times.
2- Streak bacteria taken from this suspension on a zeocin LB agar plate prepared with the E. coli Fast-Media ${ }^{\circledR}$ Zeo agar provided (see below).
3- Place the plate in an incubator at $37^{\circ} \mathrm{C}$ overnight.
4- Isolate a single colony and grow the bacteria in TB supplemented with zeocin using the Fast-Media ${ }^{\circledR}$ Zeo liquid provided (see below).
5- Extract the pDRIVE5-SEAP plasmid DNA using the method of your choice.

Selection of bacteria with E. coli Fast-Media Zeo:

E. coli Fast-Media ${ }^{\circledR}$ Zeo is a new, fast and convenient way to prepare liquid and solid media for bacterial culture by using only a microwave. E. coli Fast-Media ${ }^{\circledR}$ Zeo is a TB (liquid) or LB (solid) based medium with zeocin, and contains stabilizers.
E. coli Fast-Media ${ }^{\circledR}$ Zeo can be ordered separately (catalog code fas-zn-l, fas-zn-s).

Method:

1- Pour the contents of a pouch into a clean borosilicate glass bottle or flask.
2- Add 200 ml of distilled water to the flask
3- Heat in a microwave on MEDIUM power setting (about 400Watts), until bubbles start appearing (approximately 3 minutes). Do not heat a closed container. Do not autoclave Fast-Media ${ }^{\text {® }}$.
4- Swirl gently to mix the preparation. Be careful, the bottle and media are hot, use heatproof pads or gloves and care when handling.
5- Reheat the media for 30 seconds and gently swirl again. Repeat as necessary to completely dissolve the powder into solution. But be careful to avoid overboiling and volume loss.
6- Let agar medium cool to $45^{\circ} \mathrm{C}$ before pouring plates. Let liquid media cool to $37^{\circ} \mathrm{C}$ before seeding bacteria.
Note: Do not reheat solidified Fast-Media ${ }^{\circledR}$ as the antibiotic will be permanently destroyed by the procedure.

EcoRI (23)
NotI (2) XbaI (19) SdaI (38) SpeI (45)
1 GCGGCCGCGTCGACGATATCTAGAATTCGGATCCTGCAGGGCCCACTAGTCGCTACAATATTTTCCTGAACGGAAGAATAAATAAAACTTGTCCTGTAAA
101 GAAAACCCAGGTAAAGGAAAGTGGCAGTCCAGACTGCCCGGAAGTTCCTGGAGGCTAAGGCCTCACCCCCGTCGCTTGATAGGACCTGCTGAGCCACATG
AflII (272)
201 ACTAAGGCACGATCGCCTCCGCACGTGTAAAGGTGCTGGGTTCCAAGATGGCTGCCCCGCCGCGAGGCCCGACTTAAGTATGTCACTTCCGCACCAGCGA

301 GAAAGGCGGACCCTTCAGCCAATGAGGCCATAGGGCGGGGCTAGGCCATGATGGGCTTTCAAACTACCCAATAGGGCGTCCGAACTAAAGCGCCTACAAA

401 GTAACGTCACGTCGAGTTGCAGAGCGCCGGCAGGCGGGGCAGAGGTGGCCAAGCCAATGCGATGGCTGGGGCGGGGTCGGACGCTCTATAAGTTGTCGAT

NcoI (531)

501 AGGCGGGCACTCCGCCCTAGATTCTAAGGACCATGGTTCTGGGGCCCTGCATGCTGCTGCTGCTGCTGCTGCTGGGCCTGAGGCTACAGCTCTCCCTGGG
 601 CATCATCCCAGTTGAGGAGGAGAACCCGGACTTCTGGAACCGCGAGGCAGCCGAGGCCCTGGGTGCCGCCAAGAAGCTGCAGCCTGCACAGACAGCCGCC 231 I I P V \quad I \quad I 701 AAGAACCTCATCATCTTCCTGGGCGATGGGATGGGGGTGTCTACGGTGACAGCTGCCAGGATCCTAAAAGGGCAGAAGAAGGACAAACTGGGGCCTGAGA
 NdeI (826)
801 TACCCCTGGCTATGGACCGCTTCCCATATGTGGCTCTGTCCAAGACATACAATGTAGACAAACATGTGCCAGACAGTGGAGCCACAGCCACGGCCTACCT
 901 GTGCGGGGTCAAGGGCAACTTCCAGACCATTGGCTTGAGTGCAGCCGCCCGCTTTAACCAGTGCAACACGACACGCGGCAACGAGGTCATCTCCGTGATG
 1001 AATCGGGCCAAGAAAGCAGGGAAGTCAGTGGGAGTGGTAACCACCACACGAGTGCAGCACGCCTCGCCAGCCGGCACCTACGCCCACACGGTGAACCGCA
 1101 ACTGGTACTCGGACGCCGACGTGCCTGCCTCGGCCCGCCAGGAGGGGTGCCAGGACATCGCTACGCAGCTCATCTCCAACATGGACATTGATGTGATCCT
 1201 GGGTGGAGGCCGAAAGTACATGTTTCGCATGGGAACCCCAGACCCTGAGTACCCAGATGACTACAGCCAAGGTGGGACCAGGCTGGACGGGAAGAATCTG
 1301 GTGCAGGAATGGCTGGCGAAGCGCCAGGGTGCCCGGTATGTGTGGAACCGCACTGAGCTCATGCAGGCTTCCCTGGACCCGTCTGTGACCCATCTCATGG
 1401 GTCTCTTTGAGCCTGGAGACATGAAATACGAGATCCACCGAGACTCCACACTGGACCCCTCCCTGATGGAGATGACAGAGGCTGCCCTGCGCCTGCTGAG
290 G L F E P G D M K Y E I H R D SacII (1513)
1501 CAGGAACCCCCGCGGCTTCTTCCTCTTCGTGGAGGGTGGTCGCATCGACCACGGTCATCACGAAAGCAGGGCTTACCGGGCACTGACTGAGACGATCATG
 1601 TTCGACGACGCCATTGAGAGGGCGGGCCAGCTCACCAGCGAGGAGGACACGCTGAGCCTCGTCACTGCCGACCACTCCCACGTCTTCTCCTTCGGAGGCT
357 F D D A I E R A G Q L T C I 1701 ACCCCCTGCGAGGGAGCTCCATCTTCGGGCTGGCCCCTGGCAAGGCCCGGGACAGGAAGGCCTACACGGTCCTCCTATACGGAAACGGTCCAGGCTATGT
 1801 GCTCAAGGACGGCGCCCGGCCGGATGTTACCGAGAGCGAGAGCGGGAGCCCCGAGTATCGGCAGCAGTCAGCAGTGCCCCTGGACGAAGAGACCCACGCA

1901 GGCGAGGACGTGGCGGTGTTCGCGCGCGGCCCGCAGGCGCACCTGGTTCACGGCGTGCAGGAGCAGACCTTCATAGCGCACGTCATGGCCTTCGCCGCCT

NheI (20
2001 GCCTGGAGCCCTACACCGCCTGCGACCTGGCGCCCCCCGCCGGCACCACCGACGCCGCGCACCCGGGGCGGTCCCGGTCCAAGCGTCTGGATTGAAGCTA

2101 GCTGGCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGC

MfeI (2246)

2201 TTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTIAA
2301 AGCAAGTAAAACCTCTACAAATGTGGTATGGAATTAATTCTAAAATACAGCATAGCAAAACTTTAACCTCCAAATCAAGCCTCTACTTGAATCCTTTTCT \longrightarrow
2401 GAGGGATGAATAAGGCATAGGCATCAGGGGCTGTTGCCAATGTGCATTAGCTGTTTGCAGCCTCACCTTCTTTCATGGAGTTTAAGATATAGTGTATTTT 2501 CCCAAGGTTTGAACTAGCTCTTCATTTCTTTATGTTTTAAATGCACTGACCTCCCACATTCCCTTTTTAGTAAAATATTCAGAAATAATTTAAATACATC 2601 ATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAATATCCCCCAGTTTAGTAGTTGGACTTAGGGAACAAAGGA 2701 ACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCTAGCTTATCCTCAGTCCTGCTCCTCTGCCACAAAGTGCACGCAGTTGCCGGCCGGGTCGCGC
125. D Q E E A V F H V C N G A P D R

2801 AGGGCGAACTCCCGCCCCCACGGCTGCTCGCCGATCTCGGTCATGGCCGGCCCGGAGGCGTCCCGGAAGTTCGTGGACACGACCTCCGACCACTCGGCGT

2901 ACAGCTCGTCCAGGCCGCGCACCCACACCCAGGCCAGGGTGTTGTCCGGCACCACCTGGTCCTGGACCGCGCTGATGAACAGGGTCACGTCGTCCCGGAC
$741 \mathrm{~L} \quad \mathrm{E} \quad \mathrm{D} \quad \mathrm{L} \quad \mathrm{G} \quad \mathrm{R} \quad \mathrm{V}$ SgrAI (3004)
3001 CACACCGGCGAAGTCGTCCTCCACGAAGTCCCGGGAGAACCCGAGCCGGTCGGTCCAGAACTCGACCGCTCCGGCGACGTCGCGCGCGGTGAGCACCGGA
$41 \vee G A F D D E V F D R S F G L R D T W F E V A G A V D R A T L V P$ MfeI (3167)
3101 ACGGCACTGGTCAACTTGGCCATGATGGCTCCTCCTGTCAGGAGAGGAAAGAGAAGAAGGTTAGTACAATTGCTATAGTGAGTTGTATTATACTATGCAG
7V A S T L K A M
3201 ATATACTATGCCAATGATTAATTGTCAAACTAGGGCTGCAGGTTAATTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCG
3301 CGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATA
3401
CCAGGCGITTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCG

3601 CCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGT

3701 AGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGA

3801 AAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTC

3901 AAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGGCTAGTTAATTAACATTTAAATC

4001 A

Fast-Media ${ }^{\circledR}$

Microwaveable media for selection and propagation of E. coli transformants

Catalog \# fas-xx-l, fas-xx-s, fas-xx-xgal

For research use only

Version \# 09G27-MM

PRODUCT INFORMATION

Contents:

E. coli Fast-Media ${ }^{\circledR}$ are prepared as individual sealed pouches containing the necessary amount of powder for preparation of 200 ml of selective liquid or agar medium.
30 pouches are supplied for each order of TB or Agar and 20 pouches are supplied for each order of XGal Agar.
Storage and stability:
Fast-Media ${ }^{\text {® }}$ are shipped at room temperature, and must be stored in a dry and cool place. They are stable for at least one year at room temperature.
When properly prepared, Fast-Media ${ }^{\circledR}$ plates or broths are stable several weeks at $4^{\circ} \mathrm{C}$, and remain sterile and selective.

Quality control:

The high quality and performance of each formulation has been tested with some widely used and proprietary E. coli K12 derived strains*. These include DH5 α, Top10, MC1061, XL1 blue, JM 109, TB1, GT100, GT110, GT115, GT116.
The adequate plasmids carrying the appropriate E. coli resistance genes are used as positive control.
*E. coli recipient strains carrying the Tn 5 transposon are resistant to Kanamycin and Zeocin ${ }^{\text {"I }}$.

GENERAL PRODUCT USE

E. coli Fast-Media ${ }^{\text {® }}$ are microwaveable ready-to-use solid or liquid media, supplied with a selective antibiotic, and chromogenic substrates (for five references), therefore designed for the growth or selection of E. coli transformant colonies, as well as detection of blue/white colonies.

- Fast-Media ${ }^{\text {® }}$ Agar formulation is LB based agar medium supplemented with selective antibiotic, it is used for selection of resistant E. coli colonies after transformation by vectors carrying a selection resistance gene.
- Fast-Media ${ }^{\otimes} \mathbf{X}$-Gal formulation is a LB based agar medium supplemented with selective antibiotic, X-Gal and IPTG. It is used for detection of blue/white resistant colonies after transformation by a vector carrying LacZ gene.
- Fast-Media ${ }^{\circledR}$ TB formulation is a Terrific Broth based liquid medium supplemented with selective antibiotic. It's used for high cell density culture of transformed bacteria, and extraction of high quantity and quality of required plasmid.

FAST-MEDIA ${ }^{\circledR}$ FEATURES

E. coli Fast-Media ${ }^{\text {® }}$ offer researchers a quick and convenient way to prepare 200 ml of liquid culture medium, or 8-10 agar plates in about five minutes USING A MICROWAVE INSTEAD OF AN AUTOCLAVE.
E. coli Fast-Media ${ }^{\text {® }}$ are available with a large variety of prokaryotic selective agents including Ampicillin, Blasticidin S, Hygromycin B, Kanamycin, Puromycin and Zeocin ${ }^{\text {" }}$ (see table below). Fast-Media ${ }^{\text {® }}$ is also available with no selective agent (Base) that can be prepared with or without antibiotics.

	Agar	X-Gal	TB
Base	\checkmark		\checkmark
Ampicillin	\checkmark	\checkmark	\checkmark
Blasticidin	\checkmark	\checkmark	\checkmark
Hygromycin	\checkmark	\checkmark	\checkmark
Kanamycin	\checkmark	\checkmark	\checkmark
Puromycin	$\sqrt{ }$		$\sqrt{ }$
Zeocin ${ }^{\text {™ }}$	\checkmark	\checkmark	\checkmark

SPECIAL HANDLING

Caution should be exercised during handling of Fast-Media ${ }^{\circledR}$ due to potential allergenic properties of antibiotics. Wear protective gloves, do not breath the dust.

METHOD

For customer convenience, procedure is directly printed on each pouch.
1- Pour the pouch contents into a clean borosilicate glass bottle or flask.
2- Add 200 ml of distilled or deionized water.
3- Mix thoroughly by swirling the glass bottle or flask.
4- Heat in a microwave oven on MEDIUM power setting (about 450W) until bubbles start to appear (about 3 minutes).

Do not heat in a closed container.

5- Swirl gently to mix the preparation and re-heat for 30 seconds. Swirl gently again.
6- Repeat step 4 if necessary until the medium is completely dissolved. Do not overboil.
7- Allow the medium to cool to $50-55^{\circ} \mathrm{C}$, use directly for liquid medium, or pour plates for solid medium.
Caution: Any solution heated in a microwave oven may become superheated and suddenly boil when moved or touched. Handle with extreme care. Wear heat-proof gloves.
Note: Do not repeat this above procedure once the medium is prepared because the antibiotic will be adversely affected.

For preparation of supplemented Fast-Media ${ }^{\circledR}$ Base.

- Follow the instructions above and when media has cooled to $50-55^{\circ} \mathrm{C}$ add the antibiotic at the appropriate concentration for selection of E. coli.

