pDRIVE5SEAP-hCD45

A plasmid with a native tissue-specific human CD45 promoter
Catalog \# pdrive 5 s-hcd 45

For research use only

Version \# 11A21-MM

PRODUCT INFORMATION

Content:

- 1 disk of lyophilized GT116 E. coli bacteria transformed by pDRIVE5SEAP-hCD45.
- GT116 genotype is: F-, mcrA, $\Delta(m r r-h s d R M S-m c r B C), ~ Ø 80 l a c Z \Delta M 15$, $\Delta l a c X 74, r s p L$ (StrA), recA1, endA1 $\Delta d c m \Delta s b c C$-sbcD.
- 4 pouches of E. coli Fast-Media ${ }^{\circledR}$ Zeo (2 TB and 2 Agar)

Shipping and storage:

- Products are shipped at room temperature.
- Transformed bacteria should be stored at $-20^{\circ} \mathrm{C}$. Bacteria are stable up to one year when properly stored.
- Store E. coli Fast-Media ${ }^{\circledR}$ Zeo at room temperature. Fast-Media ${ }^{\circledR}$ pouches are stable 18 months when stored properly.

Quality control:

- Plasmid construct has been confirmed by restriction analysis and sequencing. - Bacteria have been lyophilized, and their viability upon resuspension has been verified.

GENERAL PRODUCT USE

pDRIVE5-SEAP is an expression plasmid containing a native or composite promoter of interest. pDRIVE5-SEAP may be used to:

- Subclone a promoter of interest into another vector. Unique restriction sites are present at each end of the promoter allowing convenient excision. The 5' sites are $S d a$ I, and Spe I. Sda I is compatible with $N s i$ I and Pst I. Spe I is compatible with $A v r$ II, Nhe I and $X b a$ I. The 3' restriction site is $N c o$ I which includes the ATG start codon, and is compatible with BspH I and BspLU11 I. - Compare the activity of different promoters in transient transfection experiments. Each pDRIVE5-SEAP promoter drives the expression of the SEAP reporter gene which allows for testing of the promoter's activity in transient transfection experiments. Furthermore, the SEAP gene is flanked by unique restriction sites (Nco I and Nhe I) for easy replacement with a different gene of interest.

PROMOTER CHARACTERISTICS

Human CD45 promoter
Complete Promoter Size: 856bp
Plasmid backbone: pDRIVE5-SEAP
Specificity: Haematopoietic cells
CD45, also called leukocyte common antigen, is expressed exclusively by all hematopoietic cells except erythrocytes and platelets. CD45 is one of the most abundant leukocyte cell surface component and plays a pivotal role in antigenstimulated proliferation of T lymphocytes and in thymic development. The CD45 promoter contains two major transcription initiation sites. The nucleotide sequence around the transcription initiation sites does not contain an apparent TATA box or CCAAT box probably due to the existence of multiple transcription initiation sites [1].

1. Hall L. et al. 1988. Complete exon-intron organization of the human leukocyte common antigen (CD45) gene. J. Immunol. 141(8):2781-87.

PLASMID FEATURES

- SEAP gene encodes an engineered secreted embryonic alkaline phosphatase. The levels of SEAP in the culture medium of transfected cells expressing the reporter gene can be assayed with chromogenic or luminescent methods
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA.
- pMB1 Ori is a minimal E. coli origin of replication with the same activity as the longer Ori.
- EM2K is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli.
- Zeo gene confers zeocin resistance therefore allowing the selection of transformed E. coli carrying a pDRIVE5-SEAP plasmid.
Note: Stable transfection of clones cannot be performed due to the absence of an eukaryotic promoter upstream of the Sh ble gene.

METHODS

Growth of pDRIVE5-SEAP-transformed bacteria:
Use sterile conditions to do the following:
1- Resuspend the lyophilized E. coli by adding 1 ml of LB medium in the tube containing the disk. Let sit for 5 minutes. Mix gently by inverting the tube several times.
2- Streak bacteria taken from this suspension on a zeocin LB agar plate prepared with the E. coli Fast-Media ${ }^{\circledR}$ Zeo agar provided (see below).
3- Place the plate in an incubator at $37^{\circ} \mathrm{C}$ overnight.
4- Isolate a single colony and grow the bacteria in TB supplemented with zeocin using the Fast-Media ${ }^{\circledR}$ Zeo liquid provided (see below).
5- Extract the pDRIVE5-SEAP plasmid DNA using the method of your choice.

Selection of bacteria with E. coli Fast-Media Zeo:

E. coli Fast-Media ${ }^{\circledR}$ Zeo is a fast and convenient way to prepare liquid and solid media for bacterial culture by using only a microwave. E. coli Fast-Media ${ }^{\circledR}$ Zeo is a TB (liquid) or LB (solid) based medium with zeocin, and contains stabilizers.
E. coli Fast-Media ${ }^{\circledR}$ Zeo can be ordered separately (catalog code fas-zn-l, fas-zn-s).

Method:

1- Pour the contents of a pouch into a clean borosilicate glass bottle or flask.
2- Add 200 ml of distilled water to the flask
3- Heat in a microwave on MEDIUM power setting (about 400Watts), until bubbles start appearing (approximately 3 minutes). Do not heat a closed container. Do not autoclave Fast-Media ${ }^{\circledR}$.
4- Swirl gently to mix the preparation. Be careful, the bottle and media are hot, use heatproof pads or gloves and care when handling.
5- Reheat the media for 30 seconds and gently swirl again. Repeat as necessary to completely dissolve the powder into solution. But be careful to avoid overboiling and volume loss.
6- Let agar medium cool to $45^{\circ} \mathrm{C}$ before pouring plates. Let liquid media cool to $37^{\circ} \mathrm{C}$ before seeding bacteria.
Note: Do not reheat solidified Fast-Media ${ }^{\circledR}$ as the antibiotic will be permanently destroyed by the procedure.

101 GCTGTAACTATAGTAGAAATGACATTCTGATTCCACTCCTAGCTTCACAAGGATATCTGTGAAAGATTTGGGGCAAAACTGTTAAGCTGTCTGAAAGTGC
201 TTTTGCATAAGAAATGGGTTTTACTGCTAAAACTGTCATATTGCTGAGTTTTGAATGCCCTAATGGTAAATGATACTGGGTTGCCAAAAATAACCAGATT
SspI (341)
301 AGTAGTTTTTTCATTCATTTGGCCGTCTCAGTAAGTCAAATATTGATACTTTCTACTAAGTCATCTTGCCAACACCCATTTTGTTATACTTATGCTGAAT
401 CTGTTTGTCATCTCTTAAGTAAGAAAATTATTGATTATTTTGTGGGGATTTAATTTAAAAAAAAATGGTAATGGATACTGTAAAGGAGCATTATTTGGATG
501 GTTTAAAAACATCTTCCTTGATGGGAAAATCTTTTAAAAGGCTTTCTAACTTGGTGTAATTACTTGAATTAAGGAAGTGCAATGCCATTCTACTGACTTA

601 GAACAACTTTTTTTGACTTCCTGCAAAGAGGACCCTTACAGTATTTTTGGAGAAGTTAGTAAAACCGAATCTGACATCATCACCTAGCAGTTCATGCAGCT
701 AGCAAGTGGTTTGTTCTTAGGGTAACAGAGGAGGAAATTGTTCCTCGTCTGATAAGACAACAGTGGAGAgtatgcatttatttatttacttttacatttt
801 tgattcgtttttacagagaaaaacttctacagagataacaattattttgcttttcagAAGGACGCATGCTGTTTCTTAGGGACACGGCTGACTTCCAGAT

NcoI (905)

901 ATGACCATGGTTCTGGGGCCCTGCATGCTGCTGCTGCTGCTGCTGCTGGGCCTGAGGCTACAGCTCTCCCTGGGCATCATCCCAGTTGAGGAGGAGAACC

1001 CGGACTTCTGGAACCGCGAGGCAGCCGAGGCCCTGGGTGCCGCCAAGAAGCTGCAGCCTGCACAGACAGCCGCCAAGAACCTCATCATCTTCCTGGGCGA

BamHI (1133)

1101 TGGGATGGGGGTGTCTACGGTGACAGCTGCCAGGATCCTAAAAGGGCAGAAGAAGGACAAACTGGGGCCTGAGATACCCCTGGCTATGGACCGCTTCCCA
65. G M G V S T V T A A R I L K G C (

1201 TATGTGGCTCTGTCCAAGACATACAATGTAGACAAACATGTGCCAGACAGTGGAGCCACAGCCACGGCCTACCTGTGCGGGGTCAAGGGCAACTTCCAGA

1301 CCATTGGCTTGAGTGCAGCCGCCCGCTTTTAACCAGTGCAACACGACACGCGGCAACGAGGTCATCTCCGTGATGAATCGGGCCAAGAAAGCAGGGAAGTC
 1401 AGTGGGAGTGGTAACCACCACACGAGTGCAGCACGCCTCGCCAGCCGGCACCTACGCCCACACGGTGAACCGCAACTGGTACTCGGACGCCGACGTGCCT
 1501 GCCTCGGCCCGCCAGGAGGGGTGCCAGGACATCGCTACGCAGCTCATCTCCAACATGGACATTGATGTGATCCTGGGTGGAGGCCGAAAGTACATGTTTC 199* A S A R 1601 GCATGGGAACCCCAGACCCTGAGTACCCAGATGACTACAGCCAAGGTGGGACCAGGCTGGACGGGAAGAATCTGGTGCAGGAATGGCTGGCGAAGCGCCA
 1701 GGGTGCCCGGTATGTGTGGAACCGCACTGAGCTCATGCAGGCTTCCCTGGACCCGTCTGTGACCCATCTCATGGGTCTCTTTGAGCCTGGAGACATGAAA
 1801 TACGAGATCCACCGAGACTCCACACTGGACCCCTCCCTGATGGAGATGACAGAGGCTGCCCTGCGCCTGCTGAGCAGGAACCCCCGCGGCTTCTTCCTCT

1901 TCGTGGAGGGTGGTCGCATCGACCACGGTCATCACGAAAGCAGGGCTTACCGGGCACTGACTGAGACGATCATGTTCGACGACGCCATTGAGAGGGCGGG
 BbsI (2061)
2001 CCAGCTCACCAGCGAGGAGGACACGCTGAGCCTCGTCACTGCCGACCACTCCCACGTCTTCTCCTTCGGAGGCTACCCCCTGCGAGGGAGCTCCATCTTC
 2101 GGGCTGGCCCCTGGCAAGGCCCGGGGACAGGAAGGCCTACACGGTCCTCCTATACGGAAACGGTCCAGGCTATGTGCTCAAGGACGGCGCCCGGCCGGATG

2201 TTACCGAGAGCGAGAGCGGGAGCCCCCGAGTATCGGCAGCAGTCAGCAGTGCCCCTGGACGAAGAGACCCACGCAGGCGAGGACGTGGCGGTGTTCGCGCG
 2301 CGGCCCGCAGGCGCACCTGGTTCACGGCGTGCAGGAGCAGACCTTCATAGCGCACGTCATGGCCTTCGCCCGCCTGCCTGGAGCCCTACACCGCCTGCGAC 465* G P Q A H L V H G V Q E O T F I A H V M A F A A C 01 (2471)
4991 L A P P A G T T D A A H P
2501 GATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCA
2601 ATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGG
2701 TATGGAATTAATTCTAAAATACAGCATAGCAAAACTTTAACCTCCAAATCAAGCCTCTACTTGAATCCTTTTCTGAGGGATGAATAAGGCATAGGCATCA
2801 GGGGCTGTTGCCAATGTGCATTAGCTGTTTGCAGCCTCACCTTCTTTCATGGAGTTTAAGATATAGTGTATTTTTCCCAAGGTTTGAACTAGCTCTTCATT SspI (2950)
2901 TCTTTATGTTTTAAATGCACTGACCTCCCACATTCCCTTTTTAGTAAAATATTCAGAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTA 3001 TTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAATATCCCCCAGTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAG 3101 AAAGCGAGCTTCTAGCTTATCCTCAGTCCTGCTCCTCTGCCACAAAGTGCACGCAGTTGCCGGCCGGGGTCGCGCAGGGCGAACTCCCGCCCCCACGGCTG 125 • D Q E E A V F H V C N N G A P
3201 CTCGCCGATCTCGGTCATGGCCGGCCCGGAGGCGTCCCGGAAGTTCGTGGACACGACCTCCGACCACTCGGCGTACAGCTCGTCCAGGCCGCGCACCCAC 991 E G I E T M A P G S A SgrAI (3378)
3301 ACCCAGGCCAGGGTGTTGTCCGGCACCACCTGGTCCTGGACCGCGCTGATGAACAGGGTCACGTCGTCCCGGACCACACCGGCGAAGTCGTCCTCCACGA
 3401 AGTCCCGGGAGAACCCGAGCCGGTCGGTCCAGAACTCGACCGCTCCGGCGACGTCGCGCGCGGTGAGCACCGGAACGGCACTGGTCAACTTGGCCATGAT

3501 GGCTCCTCCTGTCAGGAGAGGAAAGAGAAGAAGGTTAGTACAATTGCTATAGTGAGTTGTATTATACTATGCAGATATACTATGCCAATGATTAATTGTC
3601 AAACTAGGGCTGCAGGTTAATTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTC
3701 CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCC
3801 TCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTA
3901 TCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAG
4001 TCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGT

4101 GGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGG
4201 CAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACG
4301 GGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGGCTAGTTAATTAACATTTAAATCA

