pDRIVE5s-hCD14

A plasmid with a native tissue specific human CD14 promoter
 Catalog \# pdrive 5 s-hcd 14

For research use only
Version \# 09F17-MM

PRODUCT INFORMATION

Content:

- 1 disk of lyophilized GT116 E. coli bacteria transformed by a pDRIVE5s plasmid.
- GT116 genotype is: F-, mcrA, $\Delta(m r r-h s d R M S-m c r B C), ~ Ø 80 l a c Z \Delta M 15$, $\Delta l a c X 74$, recA1, endA1 $\Delta d c m \Delta s b c C-s b c D$.
- 4 pouches of E. coli Fast-Media ${ }^{\circledR}$ Zeo (2 TB and 2 Agar)

Shipping and storage:

- Products are shipped at room temperature.
- Transformed bacteria should be stored at $-20^{\circ} \mathrm{C}$. Bacteria are stable up to one year when properly stored.
- Store E. coli Fast-Media ${ }^{\otimes}$ Zeo at room temperature. Fast-Media ${ }^{\circledR}$ pouches are stable 18 months when stored properly.

Quality control:

- Plasmid construct has been confirmed by restriction analysis and sequencing. - Bacteria have been lyophilized, and their viability upon resuspension has been verified.

GENERAL PRODUCT USE

pDRIVE5s is an expression plasmid containing a native or composite promoter of interest. pDRIVE5s may be used to:

- Subclone a promoter of interest into another vector. Unique restriction sites are present at each end of the promoter allowing convenient excision. The 5' sites are $S d a$ I, and Spe I. $S d a$ I is compatible with $N s i$ I and Pst I. Spe I is compatible with Avr II, Nhe I and Xba I. The 3' restriction site is Nco I which includes the ATG start codon, and is compatible with $B s p H$ I and $B s p L U 11$ I. - Compare the activity of different promoters in transient transfection experiments. Each pDRIVE5s promoter drives the expression of the SEAP reporter gene which allows for testing of the promoter's activity in transient transfection experiments. Furthermore, the SEAP gene is flanked by unique restriction sites (Nco I and Nhe I) for easy replacement with a different gene of interest.

PROMOTER CHARACTERISTICS

Human CD14 promoter

Complete Promoter size: 613 bp
Specificity: Monocytic cells

CD14 is a receptor for bacterial lipopolysaccharide expressed on the surface of myeloid-derived cells, and is strongly upregulated during monocytic cell differentiation. Monocyte-specific expression of CD14 is regulated at the transcriptional level. The CD14 promoter contains a C/EBP ${ }^{1}$ and Sp^{2} site that are critical for tissue-specific regulation of CD14 gene expression.

1. Pan Z. et al. 1999. CCAAT/enhancer-binding protein activates the CD14 promoter and mediates transforming growth factor beta signaling in monocyte development. J Biol Chem 274(33):23242-8. 2. Park S. et al. 2002. Synergistic interaction of MEF2D and Sp 1 in activation of the CD14 promoter. Mol Immunol 39(1-2):25.

PLASMID FEATURES

- SEAP gene encodes an engineered secreted embryonic alkaline phosphatase. The levels of SEAP in the culture medium of transfected cells expressing the reporter gene can be assayed with chromogenic or luminescent methods
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA.
- pMB1 Ori is a minimal E. coli origin of replication with the same activity as the longer Ori.
- EM2K is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli.
- Zeo gene confers zeocin resistance therefore allowing the selection of transformed E. coli carrying a pDRIVE5s plasmid.
Note: Stable transfection of clones cannot be performed due to the absence of an eukaryotic promoter upstream of the Sh ble gene.

METHODS

Growth of pDRIVE5s-transformed bacteria:

Use sterile conditions to do the following:
1 - Resuspend the lyophilized E. coli by adding 1 ml of LB medium in the tube containing the disk. Let sit for 5 minutes. Mix gently by inverting the tube several times.
2- Streak bacteria taken from this suspension on a zeocin LB agar plate prepared with the E. coli Fast-Media ${ }^{\circledR}$ Zeo agar provided (see below).
3- Place the plate in an incubator at $37^{\circ} \mathrm{C}$ overnight.
4- Isolate a single colony and grow the bacteria in TB supplemented with zeocin using the Fast-Media ${ }^{\circledR}$ Zeo liquid provided (see below).
5- Extract the pDRIVE5s plasmid DNA using the method of your choice.

Selection of bacteria with E. coli Fast-Media Zeo:

E. coli Fast-Media ${ }^{\circledR}$ Zeo is a new, fast and convenient way to prepare liquid and solid media for bacterial culture by using only a microwave. E. coli Fast-Media ${ }^{\circledR}$ Zeo is a TB (liquid) or LB (solid) based medium with zeocin, and contains stabilizers.
E. coli Fast-Media ${ }^{\text {® }}$ Zeo can be ordered separately (catalog code fas-zn-1, fas-zn-s).

Method:

1- Pour the contents of a pouch into a clean borosilicate glass bottle or flask.
2- Add 200 ml of distilled water to the flask
3- Heat in a microwave on MEDIUM power setting (about 400Watts), until bubbles start appearing (approximately 3 minutes). Do not heat a closed container. Do not autoclave Fast-Media ${ }^{\text {® }}$.
4- Swirl gently to mix the preparation. Be careful, the bottle and media are hot, use heatproof pads or gloves and care when handling.
5- Reheat the media for 30 seconds and gently swirl again. Repeat as necessary to completely dissolve the powder into solution. But be careful to avoid overboiling and volume loss.
6- Let agar medium cool to $45^{\circ} \mathrm{C}$ before pouring plates. Let liquid media cool to $37^{\circ} \mathrm{C}$ before seeding bacteria.
Note: Do not reheat solidified Fast-Media ${ }^{\circledR}$ as the antibiotic will be permanently destroyed by the procedure.

101 CTGAGGATATTCAGGGACTTGGATTTGGTGGCAGGAGATCAACATAAACCAAGACAAGGAAGAAGTCAAAGAAATGAATCAAGTAGATTCTCTGGGATAT
201 AAGGTAGGGGGATTGGGGGGTTGGATAGTGCAGAGTATGGTACTGGCCTAAGGCACTGAGGATCATCCTTTTCCCACACCCACCAGAGAAGGCTTAGGCT
301 CCCGAGTCAACAGGGCATTCACCGCCTGGGGCGCCTGAGTCATCAGGACACTGCCAGGAGACACAGAACCCTAGATGCCCTGCAGAATCCTTCCTGTTAC
401 GGTCCCCCTCCCTGAAACATCCTTCATTGCAATATTTCCAGGAAAGGAAGGGGGCTGGCTCGGAGGAAGAGAGGTGGGGAGGTGATCAGGGTTCACAGAG
501 GAGGGAACTGAATGACATCCCAGGATTACATAAACTGTCAGAGGCAGCCGAAGAGTTCACAAGTGTGAAGCCTGGAAGCCGGCGGGTGCCGCTGTGTAGG

BspEI (628) NcoI (661)

601 AAAGAAGCTAAAGCACTTCCAGAGCCTGTCCGGAGCTCAGAGGTTCGGAAGACTTATCGACCATGGTTCTGGGGCCCTGCATGCTGCTGCTGCTGCTGCT

1) M V L G P C M L L L L L L

701 GCTGGGCCTGAGGCTACAGCTCTCCCTGGGCATCATCCCAGTTGAGGAGGAGAACCCGGACTTCTGGAACCGCGAGGCAGCCGAGGCCCTGGGTGCCGCC 13* L G L R L Q L S L G I I P V E E E N P D F 801 AAGAAGCTGCAGCCTGCACAGACAGCCGCCAAGAACCTCATCATCTTCCTGGGCGATGGGATGGGGGTGTCTACGGTGACAGCTGCCAGGATCCTAAAAG 47* K K L Q P A Q T A A K N L I I F L G D G M G V S T V T A A R I L K

NdeI (956)

901 GGCAGAAGAAGGACAAACTGGGGCCTGAGATACCCCTGGCTATGGACCGCTTCCCATATGTGGCTCTGTCCAAGACATACAATGTAGACAAACATGTGCC 801. G Q K K D K L G P E I P L A M D R F P Y V A L S K T Y N V D K 1001 AGACAGTGGAGCCACAGCCACGGCCTACCTGTGCGGGGTCAAGGGCAACTTCCAGACCATTGGCTTGAGTGCAGCCGCCCGCTTTAACCAGTGCAACACG 113. D S G A T A T A Y L C G V K G N F C T T I G L S A A A 1101 ACACGCGGCAACGAGGTCATCTCCGTGATGAATCGGGCCAAGAAAGCAGGGAAGTCAGTGGGAGTGGTAACCACCACACGAGTGCAGCACGCCTCGCCAG
 1201 CCGGCACCTACGCCCACACGGTGAACCGCAACTGGTACTCGGACGCCGACGTGCCTGCCTCGGCCCGCCAGGAGGGGTGCCAGGACATCGCTACGCAGCT 1801A G T Y A H T V N R N W Y S D A D V P A 1301 CATCTCCAACATGGACATTGATGTGATCCTGGGTGGAGGCCGAAAGTACATGTTTCGCATGGGAACCCCAGACCCTGAGTACCCAGATGACTACAGCCAA 213* I S N M D I D V I L G G G R K Y M F R M G T P D 1401 GGTGGGACCAGGCTGGACGGGAAGAATCTGGTGCAGGAATGGCTGGCGAAGCGCCAGGGTGCCCGGTATGTGTGGAACCGCACTGAGCTCATGCAGGCTT
 1501 CCCTGGACCCGTCTGTGACCCATCTCATGGGTCTCTTTGAGCCTGGAGACATGAAATACGAGATCCACCGAGACTCCACACTGGACCCCTCCCTGATGGA 280.S L D P S V T H L M G L F E P G D M K Y E I H R D S T L D P S L M E SacII (1643)
1601 GATGACAGAGGCTGCCCTGCGCCTGCTGAGCAGGAACCCCCGCGGCTTCTTCCTCTTCGTGGAGGGTGGTCGCATCGACCACGGTCATCACGAAAGCAGG
 1701 GCTTACCGGGCACTGACTGAGACGATCATGTTCGACGACGCCATTGAGAGGGCGGGCCAGCTCACCAGCGAGGAGGACACGCTGAGCCTCGTCACTGCCG 347. A Y R A L T E T I M F D D A I E R A G Q L T S E E D T L S L V T A 1801 ACCACTCCCACGTCTTCTCCTTCGGAGGCTACCCCCTGCGAGGGAGCTCCATCTTCGGGCTGGCCCCTGGCAAGGCCCGGGACAGGAAGGCCTACACGGT 3801 D H S H V F S F G G Y P L R G S S I F G L A \quad P G K A 1901 CCTCCTATACGGAAACGGTCCAGGCTATGTGCTCAAGGACGGCGCCCGGCCGGATGTTACCGAGAGCGAGAGCGGGAGCCCCGAGTATCGGCAGCAGTCA 413* L L Y G N G P G Y V L K D G A R \quad P 2001 GCAGTGCCCCTGGACGAAGAGACCCACGCAGGCGAGGACGTGGCGGTGTTCGCGCGCGGCCCGCAGGCGCACCTGGTTCACGGCGTGCAGGAGCAGACCT 447* A V P L D E E T H A G E D V A V F A R G P Q A H L V H G V Q E Q T 2101 TCATAGCGCACGTCATGGCCTTCGCCGCCTGCCTGGAGCCCTACACCGCCTGCGACCTGGCGCCCCCCGCCGGCACCACCGACGCCGCGCACCCGGGGCG 480. F I A H V M A F A A C L E P Y T A C D L A P P A G T T D A A H P G R NheI (2227)
2201 GTCCCGGTCCAAGCGTCTGGATTGAAGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATG 513* S R S K R L D •
2301 CTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAG
2401 GTTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATTAATTCTAAAATACAGCATAGCAAAACTTTAACCTC
2501 CAAATCAAGCCTCTACTTGAATCCTTTTCTGAGGGATGAATAAGGCATAGGCATCAGGGGCTGTTGCCAATGTGCATTAGCTGTTTGCAGCCTCACCTTC 2601 TTTCATGGAGTTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCTTCATTTCTTTATGTTTTAAATGCACTGACCTCCCACATTCCCTTTTTAG 2701 TAAAATATTCAGAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAATATCCCCCA 2801 GTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCTAGCTTATCCTCAGTCCTGCTCCTCTGCCACA 125 • D Q E E A V
2901 AAGTGCACGCAGTTGCCGGCCGGGTCGCGCAGGGCGAACTCCCGCCCCCACGGCTGCTCGCCGATCTCGGTCATGGCCGGCCCGGAGGCGTCCCGGAAGT
 3001 TCGTGGACACGACCTCCGACCACTCGGCGTACAGCTCGTCCAGGCCGCGCACCCACACCCAGGCCAGGGTGTTGTCCGGCACCACCTGGTCCTGGACCGC 841 T S C V V E SgrAI (3134)
3101 GCTGATGAACAGGGTCACGTCGTCCCGGACCACACCGGCGAAGTCGTCCTCCACGAAGTCCCGGGAGAACCCGAGCCGGTCGGTCCAGAACTCGACCGCT
 3201 CCGGCGACGTCGCGCGCGGTGAGCACCGGAACGGCACTGGTCAACTTGGCCATGATGGCTCCTCCTGTCAGGAGAGGAAAGAGAAGAAGGTTAGTACAAT $17 \mathrm{G} \quad \mathrm{A} \quad \mathrm{V} \quad \mathrm{D} \quad \mathrm{R} \quad \mathrm{A} \quad \mathrm{T} \quad \mathrm{L} \quad \mathrm{V} \quad \mathrm{P} \quad \mathrm{V} \quad \mathrm{A} \quad \mathrm{S} \quad \mathrm{T} \quad \mathrm{L} \quad \mathrm{K} \quad \mathrm{A} \quad \mathrm{M} \longleftarrow<$ 3301 TGCTATAGTGAGTTGTATTATACTATGCAGATATACTATGCCAATGATTAATTGTCAAACTAGGGCTGCAGGTTAATTAAGAACATGTGAGCAAAAGGCC

3401 AGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAG
3501 GTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTG
3601 TCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGC

3801 TGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATC
3901 TGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGC
4001 AGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTT
4101 GGTCATGGCTAGTTAATTAACATTTAAATCA

