pDRIVE5s-hB29

A plasmid with a native tissue specific human B29 (immunoglobulin beta) promoter
 Catalog \# pdrive5s-hb29

For research use only
Version \# 09F17-MM

PRODUCT INFORMATION

Content:

- 1 disk of lyophilized GT116 E. coli bacteria transformed by a pDRIVE5s plasmid.
- GT116 genotype is: F-, mcrA, $\Delta(m r r-h s d R M S-m c r B C)$, Ø80lacZ $\mathrm{Z} M 15$, $\Delta l a c X 74$, recA1, endA1 $\Delta d c m \Delta s b c C-s b c D$.
- 4 pouches of E. coli Fast-Media ${ }^{\circledR}$ Zeo (2 TB and 2 Agar)

Shipping and storage:

- Products are shipped at room temperature.
- Transformed bacteria should be stored at $-20^{\circ} \mathrm{C}$. Bacteria are stable up to one year when properly stored.
- Store E. coli Fast-Media ${ }^{\circledR}$ Zeo at room temperature. Fast-Media ${ }^{\circledR}$ pouches are stable 18 months when stored properly.

Quality control:

- Plasmid construct has been confirmed by restriction analysis and sequencing. - Bacteria have been lyophilized, and their viability upon resuspension has been verified.

GENERAL PRODUCT USE

pDRIVE5s is an expression plasmid containing a native or composite promoter of interest. pDRIVE5s may be used to:

- Subclone a promoter of interest into another vector. Unique restriction sites are present at each end of the promoter allowing convenient excision. The 5' sites are $S d a$ I, and Spe I. Sda I is compatible with Nsi I and Pst I. Spe I is compatible with $A v r$ II, Nhe I and Xba I. The 3' restriction site is Nco I which includes the ATG start codon, and is compatible with BspH I and BspLU11 I. - Compare the activity of different promoters in transient transfection experiments. Each pDRIVE5s promoter drives the expression of the SEAP reporter gene which allows for testing of the promoter's activity in transient transfection experiments. Furthermore, the SEAP gene is flanked by unique restriction sites (Nco I and Nhe I) for easy replacement with a different gene of interest.

PROMOTER CHARACTERISTICS

Human B29 promoter

Complete Promoter size: 1219 bp
Specificity: B cells

B29 (Igbeta) is a B-cell-specific member of the immunoglobulin gene superfamily that is expressed throughout B-cell development. The product of the B 29 gene is an essential component of the B cell receptor and plays a critical role in B cell development. The B29 gene lacks either a TATA or a CAAT box and transcription is initiated at multiple sites ${ }^{1}$. The minimal promoter of the human B29 gene is contained within a <200-bp region 5' of these multiple start sites ${ }^{2}$. This minimal promoter exhibits B-cell-specific activity and contains SP1, ETS, OCT, and IKAROS/LYF-1 transcription factor motifs ${ }^{3}$.

1. Hermanson GG. et al. 1989. Immunoglobulin enhancer and promoter motifs 5^{\prime} of the B29 B-cell-specific gene. Proc Natl Acad Sci U S A 86(19):7341-5. 2. Omori SA. \& Wall R. 1993. Multiple motifs regulate the B-cell-specific promoter of the B29 gene. Proc Natl Acad Sci USA 90(24):11723-7. 3. Thompson AA. et al., 1996. The promoter and 5^{\prime} flanking sequences controlling human B29 gene expression. Blood. 87(2):666-73.

PLASMID FEATURES

- SEAP gene encodes an engineered secreted embryonic alkaline phosphatase. The levels of SEAP in the culture medium of transfected cells expressing the reporter gene can be assayed with chromogenic or luminescent methods
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA.
- pMB1 Ori is a minimal E. coli origin of replication with the same activity as the longer Ori.
- EM2K is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli.
- Zeo gene confers zeocin resistance therefore allowing the selection of transformed E. coli carrying a pDRIVE5s plasmid.
Note: Stable transfection of clones cannot be performed due to the absence of an eukaryotic promoter upstream of the Sh ble gene.

METHODS

Growth of pDRIVE5s-transformed bacteria:

Use sterile conditions to do the following:
1 - Resuspend the lyophilized E. coli by adding 1 ml of LB medium in the tube containing the disk. Let sit for 5 minutes. Mix gently by inverting the tube several times.
2- Streak bacteria taken from this suspension on a zeocin LB agar plate prepared with the E. coli Fast-Media ${ }^{\circledR}$ Zeo agar provided (see below).
3- Place the plate in an incubator at $37^{\circ} \mathrm{C}$ overnight.
4- Isolate a single colony and grow the bacteria in TB supplemented with zeocin using the Fast-Media ${ }^{\circledR}$ Zeo liquid provided (see below).
5- Extract the pDRIVE5s plasmid DNA using the method of your choice.

Selection of bacteria with E. coli Fast-Media Zeo:

E. coli Fast-Media ${ }^{\circledR}$ Zeo is a new, fast and convenient way to prepare liquid and solid media for bacterial culture by using only a microwave. E. coli Fast-Media ${ }^{\circledR}$ Zeo is a TB (liquid) or LB (solid) based medium with zeocin, and contains stabilizers.
E. coli Fast-Media ${ }^{\text {® }}$ Zeo can be ordered separately (catalog code fas-zn-1, fas-zn-s).

Method:

1- Pour the contents of a pouch into a clean borosilicate glass bottle or flask.
2- Add 200 ml of distilled water to the flask
3- Heat in a microwave on MEDIUM power setting (about 400Watts), until bubbles start appearing (approximately 3 minutes). Do not heat a closed container. Do not autoclave Fast-Media ${ }^{\text {® }}$.
4- Swirl gently to mix the preparation. Be careful, the bottle and media are hot, use heatproof pads or gloves and care when handling.
5- Reheat the media for 30 seconds and gently swirl again. Repeat as necessary to completely dissolve the powder into solution. But be careful to avoid overboiling and volume loss.
6- Let agar medium cool to $45^{\circ} \mathrm{C}$ before pouring plates. Let liquid media cool to $37^{\circ} \mathrm{C}$ before seeding bacteria.
Note: Do not reheat solidified Fast-Media ${ }^{\circledR}$ as the antibiotic will be permanently destroyed by the procedure.

AgeI (945)

SgrAI (945)
901 TTGGCAGACGGCAGAGGGGAGGCTGGCTGGCCCAGGGGATGACCACCGGTGGGGTAAGCACAGACAGAGGGGAGCACAGGCTTCCCCCAGAAGACTGAGA
1001 GGCCCCCCAGAGGCATCCACAGAGGACCCCAGCTGTGCTGCCCAAGCTGGGCGACCGCCAAACCTTAGCGGCCCAGCTGACAAAAGCCTGCCCTCCCCCA \longrightarrow
1101 GGGTCCCCGGAGAGCTGGTGCCTCCCCTGGGTCCCAATTTGCATGGCAGGAAGGGGCCTGGTGAGGAAGAGGCGGGGAGGGGACAGGCTGCAGCCGGTGC

NcoI (1269)

1201 AGTTACACGTTTTCCTCCAAGGAGCCTCGGACGTTGTCACGGGTTTGGGGTCGGGGACAGAGCGGTGACCATGGTTCTGGGGCCCTGCATGCTGCTGCTG $\longrightarrow M V L G B C M L L L$
1301 CTGCTGCTGCTGGGCCTGAGGCTACAGCTCTCCCTGGGCATCATCCCAGTTGAGGAGGAGAACCCGGACTTCTGGAACCGCGAGGCAGCCGAGGCCCTGG
11 L L L L G L R L Q L S L G I I P V E E E N P D F
1401 GTGCCGCCAAGAAGCTGCAGCCTGCACAGACAGCCGCCAAGAACCTCATCATCTTCCTGGGCGATGGGATGGGGGTGTCTACGGTGACAGCTGCCAGGAT
44.G A A K K L Q P A Q TA A K N L I I F L G D

NdeI (1564)
1501 CCTAAAAGGGCAGAAGAAGGACAAACTGGGGCCTGAGATACCCCTGGCTATGGACCGCTTCCCATATGTGGCTCTGTCCAAGACATACAATGTAGACAAA
 1601 CATGTGCCAGACAGTGGAGCCACAGCCACGGCCTACCTGTGCGGGGTCAAGGGCAACTTCCAGACCATTGGCTTGAGTGCAGCCGCCCGCTTTAACCAGT
 1701 GCAACACGACACGCGGCAACGAGGTCATCTCCGTGATGAATCGGGCCAAGAAAGCAGGGAAGTCAGTGGGAGTGGTAACCACCACACGAGTGCAGCACGC
 1801 CTCGCCAGCCGGCACCTACGCCCACACGGTGAACCGCAACTGGTACTCGGACGCCGACGTGCCTGCCTCGGCCCGCCAGGAGGGGTGCCAGGACATCGCT
 1901 ACGCAGCTCATCTCCAACATGGACATTGATGTGATCCTGGGTGGAGGCCGAAAGTACATGTTTCGCATGGGAACCCCAGACCCTGAGTACCCAGATGACT

2001 ACAGCCAAGGTGGGACCAGGCTGGACGGGAAGAATCTGGTGCAGGAATGGCTGGCGAAGCGCCAGGGTGCCCGGTATGTGTGGAACCGCACTGAGCTCAT
 2101 GCAGGCTTCCCTGGACCCGTCTGTGACCCATCTCATGGGTCTCTTTGAGCCTGGAGACATGAAATACGAGATCCACCGAGACTCCACACTGGACCCCTCC 277 Q A S L D P S V T H L M G L F E P G D M K Y E I H R D S T L D SacII (2251)
2201 CTGATGGAGATGACAGAGGCTGCCCTGCGCCTGCTGAGCAGGAACCCCCGCGGCTTCTTCCTCTTCGTGGAGGGTGGTCGCATCGACCACGGTCATCACG
 2301 AAAGCAGGGCTTACCGGGCACTGACTGAGACGATCATGTTCGACGACGCCATTGAGAGGGCGGGCCAGCTCACCAGCGAGGAGGACACGCTGAGCCTCGT
$344 \mathrm{E} \quad \mathrm{S}$ R A Y R A L T E T I M F 2401 CACTGCCGACCACTCCCACGTCTTCTCCTTCGGAGGCTACCCCCTGCGAGGGAGCTCCATCTTCGGGCTGGCCCCTGGCAAGGCCCGGGACAGGAAGGCC
 2501 TACACGGTCCTCCTATACGGAAACGGTCCAGGCTATGTGCTCAAGGACGGCGCCCGGCCGGATGTTACCGAGAGCGAGAGCGGGAGCCCCGAGTATCGGC
 2601 AGCAGTCAGCAGTGCCCCTGGACGAAGAGACCCACGCAGGCGAGGACGTGGCGGTGTTCGCGCGCGGCCCGCAGGCGCACCTGGTTCACGGCGTGCAGGA
$444 \mathrm{Q} \quad \mathrm{Q} \quad \mathrm{S}$ A 2701 GCAGACCTTCATAGCGCACGTCATGGCCTTCGCCGCCTGCCTGGAGCCCTACACCGCCTGCGACCTGGCGCCCCCCGCCGGCACCACCGACGCCGCGCAC
477. Q T F I A H V M A F A A C L E P Y T A C D L A P P A G T T D A A H NheI (2835)
2801 CCGGGGCGGTCCCGGTCCAAGCGTCTGGATTGAAGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGA 511* $P \quad G \quad R \quad S \quad R \quad S \quad K \quad R \quad L \quad D \quad$ 。

MfeI (2984)

2901 AAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTA
3001 TGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATTAATTCTAAAATACAGCATAGCAAAACT
3101 TTAACCTCCAAATCAAGCCTCTACTTGAATCCTTTTCTGAGGGATGAATAAGGCATAGGCATCAGGGGCTGTTGCCAATGTGCATTAGCTGTTTGCAGCC 3201 TCACCTTCTTTCATGGAGTTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCTTCATTTCTTTATGTTTTAAATGCACTGACCTCCCACATTCC 3301 CTTTTTAGTAAAATATTCAGAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAAT 3401 ATCCCCCAGTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCTAGCTTATCCTCAGTCCTGCTCCT

3501 CTGCCACAAAGTGCACGCAGTTGCCGGCCGGGTCGCGCAGGGCGAACTCCCGCCCCCACGGCTGCTCGCCGATCTCGGTCATGGCCGGCCCGGAGGCGTC 120 A V F HVC N G A P D R L A F E R G W P Q E G I E T M A P G S A D 3601 CCGGAAGTTCGTGGACACGACCTCCGACCACTCGGCGTACAGCTCGTCCAGGCCGCGCACCCACACCCAGGCCAGGGTGTTGTCCGGCACCACCTGGTCC $87 \mathrm{R} F \mathrm{~N} T \mathrm{~S} V \mathrm{~V}$ E S W E A Y L E D L G R V W V W A L T N D P V V Q D SgrAI (3742)
3701 TGGACCGCGCTGATGAACAGGGTCACGTCGTCCCGGACCACACCGGCGAAGTCGTCCTCCACGAAGTCCCGGGAGAACCCGAGCCGGTCGGTCCAGAACT
53 Q V A S I F L T V D D R V V G A F D D E V F D R S F G L R D T W F E 3801 CGACCGCTCCGGCGACGTCGCGCGCGGTGAGCACCGGAACGGCACTGGTCAACTTGGCCATGATGGCTCCTCCTGTCAGGAGAGGAAAGAGAAGAAGGTT

20 V A G A V D R A T L V P V A S T L K A M MfeI (3905)
3901 AGTACAATTGCTATAGTGAGTTGTATTATACTATGCAGATATACTATGCCAATGATTAATTGTCAAACTAGGGCTGCAGGTTAATTAAGAACATGTGAGC

4001 AAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCA

4101 AGTCAGAGGIGGCGAAACCCGACAGGACTATAAAGATACCAGGCGITTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCG

4201 GATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGG

4301 CTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCA

4401 GCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTAT

4501 TTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGT

4601 TTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAA
4701 GGGATTTTGGTCATGGCTAGTTAATTAACATTTAAATCA

